图书介绍

工程应用编码与信息理论 英文版【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

工程应用编码与信息理论 英文版
  • (美)Richard B. Wells著 著
  • 出版社: 北京:机械工业出版社
  • ISBN:711110983X
  • 出版时间:2002
  • 标注页数:305页
  • 文件大小:44MB
  • 文件页数:320页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

工程应用编码与信息理论 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1.DISCRETESOURCESANDENTROPY1

1.1OverviewofDigitalCommunicationandStorageSystems1

1.2DiscreteInformationSourcesandEntropy 2

1.2.1Sourcealphabetsandentropy,2

1.2.2Jointandconditionalentropy,6

1.2.3Entropyofsymbolblocksandthechainrule,8

1.3SourceCoding10

1.3.1Mappingfunctionsandefficiency,10

1.3.2Mutualinformation,12

1.3.3Abriefdigressiononencryption,14

1.3.4Summaryofsection1.3,15

1.4.1Prefixcodesandinstantaneousdecoding,16

1.4HuffmanCoding16

1.4.2ConstructionofHuffmancodes,17

1.4.3Hardwareimplementationapproaches,19

1.4.4RobustnessofHuffmancodingefficiency,20

1.5DictionaryCodesandLempel-ZivCoding21

1.5.1Therationalebehinddynamicdictionarycoding,21

1.5.2Alinked-listLZalgorithm,22

1.5.3Thedecodingprocess,25

1.5.4Large-blockrequirementofLZcompression,26

1.6ArithmeticCoding28

1.6.1Code-wordlengthandtheasymptoticequipartitionproperty,28

1.6.2Thearithmeticcodingmethod,30

1.6.3Decodingarithmeticcodes,32

1.6.4Otherissuesinarithmeticcoding,33

1.7SourceModelsandAdaptiveSourceCoding34

1.8ChapterSummary35

References36

Exercises37

2.CHANNELSANDCHANNELCAPACITY39

2.1TheDiscreteMemorylessChannelModel39

2.1.1Thetransitionprobabilitymatrix,39

2.1.2Outputentropyandmutualinformation,41

2.2ChannelCapacityandtheBinarySymmetricChannel43

2.2.1Maximizationofmutualinformationandchannelcapacity,43

2.2.2Symmetricchannels,45

2.3.1Equivocation,48

2.3BlockCodingandShannon sSecondTheorem48

2.3.2Entropyrateandthechannel-codingtheorem,49

2.4MarkovProcessesandSourceswithMemory51

2.4.1Markovprocesses,51

2.4.2Steady-stateprobabilityandtheentropyrate,54

2.5MarkovChainsandDataProcessing56

2.6ConstrainedChannels58

2.6.1Modulationtheoryandchannelconstraints,58

2.6.2Linearandtime-invariantchannels,60

2.7AutocorrelationandPowerSpectrumofSequences62

2.7.1Statisticsoftimesequences,62

2.7.2Thepowerspectrum,64

2.8.1Constraintsondatasequences,68

2.8DataTranslationCodes68

2.8.2Statespaceandtrellisdescriptionsofcodes,70

2.8.3Capacityofadatatranslationcode,73

2.9(d,k)Sequences75

2.9.1Run-length-limitedcodesandmaxentropicsequences,75

2.9.2Powerspectrumofmaxentropicsequences,77

2.10ChapterSummary82

References83

Exercises83

3.RUN-LENGTH-LIMITEDCODES89

3.1GeneralConsiderationsforDataTranslationCoding89

3.2PrefixCodesandBlockCodes91

3.2.1Fixed-lengtnblockcodes,91

3.2.2Variable-lengthblockcodes,92

3.2.3PrefixcodesandtheKraftinequality,94

3.3State-DependentFixed-LengthBlockCodes96

3.4Variable-LengthFixed-RateCodes98

3.5Look-AheadCodes102

3.5.1Code-wordconcatenation,102

3.5.2Thekconstraint,104

3.5.3Informalandformaldesignmethods,105

3.6DC-FreeCodes107

3.6.1Therunningdigitalsumandthedigitalsumvariation,107

3.6.2State-splittingandmatchedspectralnullcodes,109

3.7ChapterSummary114

Exercises115

References115

4.LINEARBLOCKERROR-CORRECTINGCODES117

4.1GeneralConsiderations117

4.1.1Channelcodingforerrorcorrection,117

4.1.2Errorratesanderrordistributionforthebinarysymmetricchannel,118

4.1.3Errordetectionandcorrection,121

4.1.4Themaximumlikelihooddecodingprinciple,123

4.1.5Hammingdistancecodecapability,124

4.2BinaryFieldsandBinaryVectorSpaces126

4.2.1Thebinaryfield,126

4.2.2Representinglinearcodesinavectorspace,130

4.3.1Elementarypropertiesofvectorspaces,131

4.3LinearBlockCodes131

4.3.2Hammingweight,Hammingdistance,andtheHammingcube,133

4.3.3TheHammingsphereandboundsonredundancyrequirements,135

4.4DecodingLinearBlockCodes136

4.4.1Completedecodersandbounded-distancedecoders,136

4.4.2Syndromedecodersandtheparity-checktheorem,138

4.5HammingCodes140

4.5.1ThedesignofHammingcodes,140

4.5.2ThedualcodeofaHammingcode,143

4.5.3TheexpandedHammingcode,144

4.6ErrorRatePerformanceBoundsforLinearBlockError-CorrectingCodes147

4.6.1Blockerrorrates,147

4.6.2Biterrorrate,148

4.7PerformanceofBounded-DistanceDecoderswithRepeatRequests149

4.7.1Approximateerrorperformance,152

4.7.2EffectivecoderateofARQsystems,154

4.7.3ARQprotocols,156

4.8ChapterSummary157

References158

Exercises158

5.CYCLICCODES160

5.1DefinitionandPropertiesofCyclicCodes160

5.2PolynomialRepresentationofCyclicCodes162

5.3.1Polynomialrings,164

5.3PolynomialModuloArithmetic164

5.3.2Someimportantalgebraicidentities,166

5.4GenerationandDecodingofCyclicCodes169

5.4.1Generator,parity-check,andsyndromepolynomials,169

5.4.2Systematiccycliccodes,169

5.4.3Hardwareimplementationofencodersforsystematiccycliccodes,171

5.4.4Hardwareimplementationofdecodersforcycliccodes,174

5.4.5TheMeggittdecoder,175

5.5Error-TrappingDecoders178

5.5.1Updatingthesyndromeduringcorrection,178

5.5.2Bursterrorpatternsanderrortrapping,180

5.6SomeStandardCyclicBlockCodes184

5.6.1TheHammingcodes,184

5.6.2BCHcodes,185

5.6.3Burst-correctingcodes,186

5.6.4Cyclicredundancycheckcodes,187

5.7SimpleModificationstoCyclicCodes189

5.7.1Expandingacode,189

5.7.2Shorteningacode,190

5.7.3Noncyclicityofshortenedcodes,193

5.7.4Interleaving,194

5.8ChapterSummary197

References197

Exercises198

6.1DefinitionofConvolutionalCodes201

6.2.1Thestatediagramandtrellisrepresentations,205

6.2StructuralPropertiesofConvolutionalCodes205

6.CONVOLUTIONALCODES207

6.2.2Transferfunctionsofconvolutionalcodes,207

6.3TheViterbiAlgorithm210

6.4WhytheViterbiAlgorithmWorksⅠ:Hard-DecisionDecoding215

6.4.1Maximumlikelihoodunderhard-decisiondecoding,215

6.4.2Erroreventprobability,217

6.4.3Boundsonbiterrorrate,219

6.5SomeKnownGoodConvolutionalCodes221

6.6WhytheViterbiAlgorithmWorksⅡ:Soft-DecisionDecoding223

6.6.1Euclideandistanceandmaximumlikelihood,223

6.6.2Eliminationoftiesandinformationloss,226

6.6.3Calculationofthelikelihoodmetric,228

6.7TheTracebackMethodofViterbiDecoding229

6.8PuncturedConvolutionalCodes234

6.8.1Puncturing,234

6.8.2Goodpuncturedconvolutionalcodes,236

6.9ChapterSummary238

References239

Exercises239

7.TRELLIS-CODEDMODULATION242

7.1Multiamplitude/MultiphaseDiscreteMemoryless242

Channels242

7.1.1I—Qmodulation,242

7.1.2Then-aryPSKsignalconstellation,243

7.1.3PSKerrorrate,245

7.1.4Quadratureamplitudemodulation,247

7.2SystematicRecursiveConvolutionalEncoders248

7.3SignalMappingandSetPartitioning251

7.4KnownGoodTrellisCodesforPSKandQAM254

7.5ChapterSummary257

References257

Exercises258

8.INFORMATIONTHEORYANDCRYPTOGRAPHY259

8.1Cryptosystems259

8.1.1Basicelementsofciphersystems,259

8.1.2Somesimpleciphersystems,261

8.2AttacksonCryptosystems265

8.3PerfectSecrecy266

8.4LanguageEntropyandSuccessfulCiphertextAttacks269

8.4.1Thekey-equivocationtheorem,269

8.4.2Spuriouskeysandkeyequivocation,270

8.4.3Languageredundancyandunicitydistance,271

8.5ComputationalSecurity272

8.6DiffusionandConfusion274

8.7ProductCipherSystems275

8.7.1Commuting,noncommuting,andidempotentproductciphers,276

8.7.2Mixingtransformationsandgoodproductciphers,278

8.8Codes279

8.9Public-KeyCryptosystems280

8.11ChapterSummary281

8.10OtherIssues281

References282

Exercises283

9.SHANNON SCODINGTHEOREMS285

9.1RandomCoding285

9.2TheAverageRandomCode287

9.3ADiscussionofShannon sSecondTheorem289

9.4Shannon-FanoCoding290

9.5Shannon sNoiseless-CodingTheorem292

9.6AFewFinalWords293

References294

ANSWERSTOSELECTEDEXERCISES295

INDEX299

热门推荐