图书介绍

语音语言处理导论【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

语音语言处理导论
  • (英)克勒曼著 著
  • 出版社: 北京市:北京大学出版社
  • ISBN:9787301171530
  • 出版时间:2010
  • 标注页数:301页
  • 文件大小:72MB
  • 文件页数:329页
  • 主题词:自然语言处理-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

语音语言处理导论PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 About this book2

1.2 Purpose of this book2

1.3 Some reasons to use this book3

1.4 What's in the book(and what's not)5

1.5 Computational set-up needed for this book8

1.6 Computational skills that are necessary in order to use the book9

1.7 Free software suggestions10

1.8 Book structure10

2 Sounds and numbers13

2.1 Preparatory assignments14

2.2 Solutions21

2.3 Sampling24

2.4 Quantization24

2.5 The sampling theorem27

2.6 Generating a signal29

2.7 Numeric data types31

2.8 The program34

2.9 Structure of a loop35

2.10 Structure of an array37

2.11 Calculating the cosine values38

2.12 Structure of the program39

2.13 Writing the signal to a file40

Chapter summary43

Further Exercises43

Further reading46

3 Digital filters and resonators47

3.1 Operations on sequences of numbers48

3.2 A program for calculating RMS amplitude48

3.3 Filtering50

3.4 A program for calculating running means of 452

3.5 Smoothing over a longer time-window54

3.6 Avoiding the need for long window54

3.7 IIR filters in C61

3.8 Structure of the Klatt formant synthesizer62

Chapter summary68

Exercises68

Further reading69

4 Frequency analysis and linear predictive coding71

4.1 Spectral analysis72

4.2 Spectral analysis in C72

4.3 Cepstral analysis79

4.4 Computation of the cepstrum in C80

4.5 Pitch tracking using cepstral analysis83

4.6 Voicing detection86

4.7 f0 estimation by the autocorrelation method90

4.8 Linear predictive coding95

4.9 C programs for LPC analysis and resynthesis100

4.10 Trying it out106

4.11 Applications of LPC106

Chapter Summary109

Further exercises109

Further reading110

5 Finite-state machines111

5.1 Some simple examples112

5.2 A more serious example113

5.3 Deterministic and non-deterministic automata116

5.4 Implementation in Prolog118

5.5 Prolog's processing strategy and the treatment of variables129

5.6 Generating strings132

5.7 Three possibly useful applications of that idea134

5.8 Another approach to describing finite-state machines135

5.9 Self-loops137

5.10 Finite-state transducers(FSTs)139

5.11 Using finite-state transducers to relate speech to phonemes144

5.12 Finite-state phonology149

5.13 Finite-state syntactic processing153

Chapter summary156

Further exercises156

Further reading156

6 Introduction to speech recognition techniques157

6.1 Architectures for speech recognition158

6.2 The pattern-recognition approach166

6.3 Dynamic time warping168

6.4 Applications177

6.5 Sources of variability in speech181

Chapter summary182

Further reading183

7 Probabilistic finite-state models185

7.1 Introduction186

7.2 Indeterminacy:n-gram models for part-of-speech tagging187

7.3 Some probability theory for language modelling190

7.4 Markov models192

7.5 Trigram models198

7.6 Incompleteness of the training corpus202

7.7 Part-of-speech model calculations209

7.8 Using HMMs for speech recognition210

7.9 Chomsky's objections to Markov models and some rejoinders213

Chapter summary219

Further reading219

8 Parsing221

8.1 Introduction222

8.2 A demo222

8.3 'Intuitive'parsing223

8.4 Recursive descent parsing225

8.5 The simplest parsing program232

8.6 Difference lists233

8.7 Generating a parse tree236

8.8 Syllabification238

8.9 Other parsing algorithms242

8.10 Chart parsing242

8.11 Depth-first vs.breadth-first search245

8.12 Deterministic parsing,Marcus parsing and minimal commitment parsing246

8.13 Parallel parsing249

Chapter summary249

Further reading250

9 Using probabilistic grammars251

9.1 Motivations252

9.2 Probabilistic context-free grammars256

9.3 Estimation of rule probabilities258

9.4 A practical example261

9.5 A limitation of probabilistic context-free grammars267

9.6 Tree adjoining grammars268

9.7 Data-oriented parsing271

Chapter Summary272

Conclusion and suggestions for further reading272

Appendix:The American Standard Code for Information Interchange(ASCII)275

Glossary277

References293

Index299

热门推荐